

Neuroscience and Machine Learning

Alexander Mathis alexander.mathis@epfl.ch

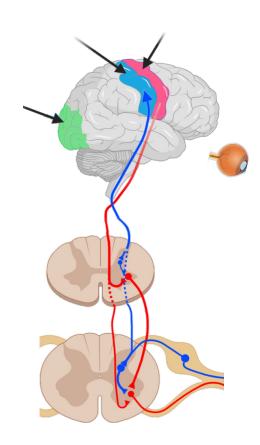
Phys-754 Lecture series on scientific machine learning September 26, 2024

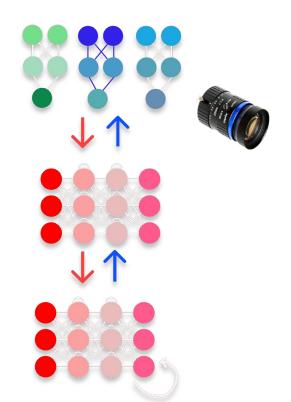
Part 2

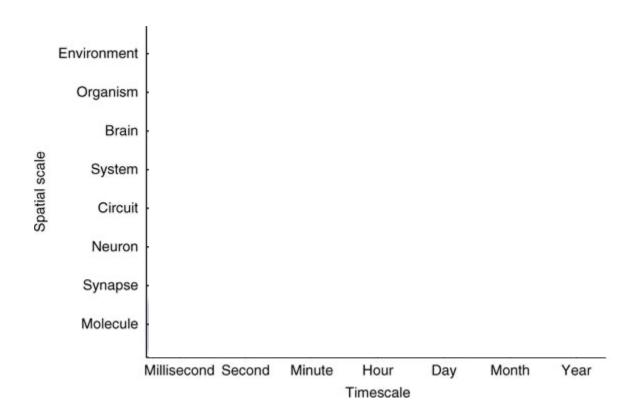
ML models for neuroscience

Biological Intelligence

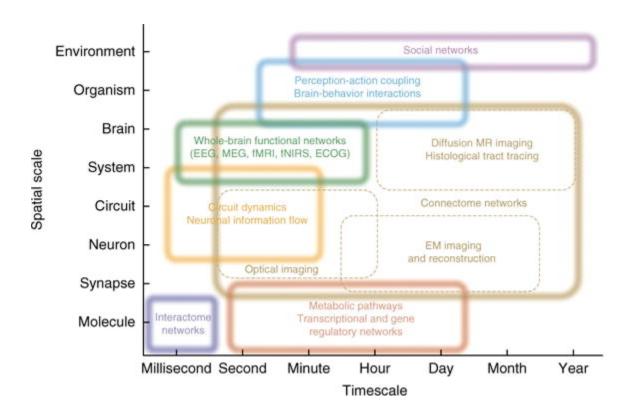
Artificial Intelligence



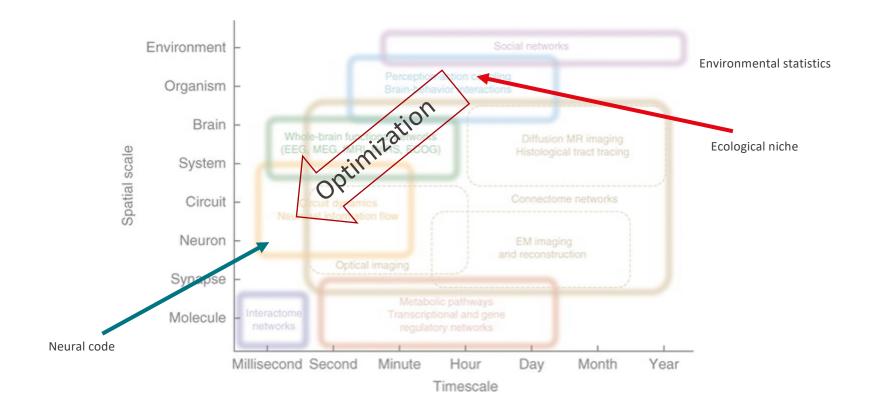




EPFL Temporal and spatial scales in neuroscience



Task-driven modeling: linking behavior to circuits



Machine learning

Architecture

Task / objective

Dataset

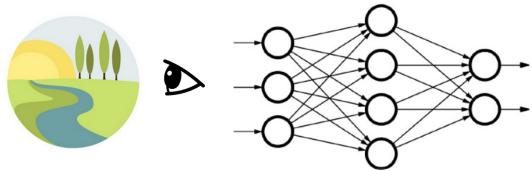
Optimization method (learning rule)

ML model

Machine learning	Neuroscience
Architecture	Circuits
Task / objective	Ecological niche
Dataset	Environment
Optimization method (learning rule)	Natural selection + synaptic plasticity

ML model

Using deep neural networks as goal-driven models of a system



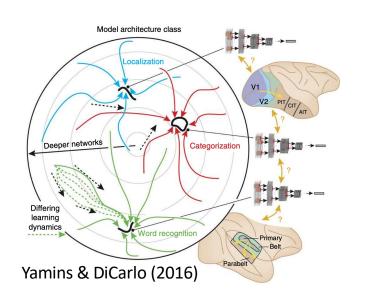
Vision: Yamins et al. (2014) -> object recog.

Audition: Kell et al. (2018)- speech recognition, speaker identification, natural sound identification

Barrel Cortex: Zhuang et al. (2017)

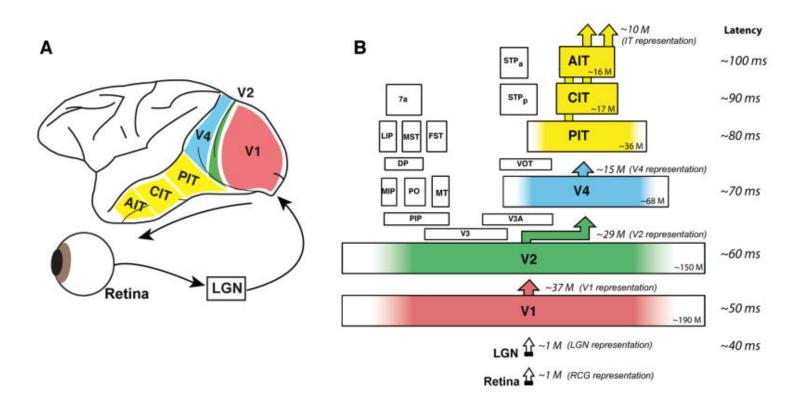
Cognition: Mante et al. (2013)

Proprioception: Sandbrink et al. (2023)



EPFL

Ventral visual pathway



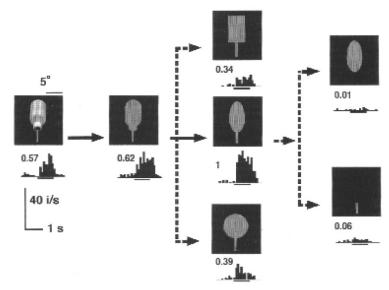
DiCarlo, Neuron 2012

IT neurons are nonlinear

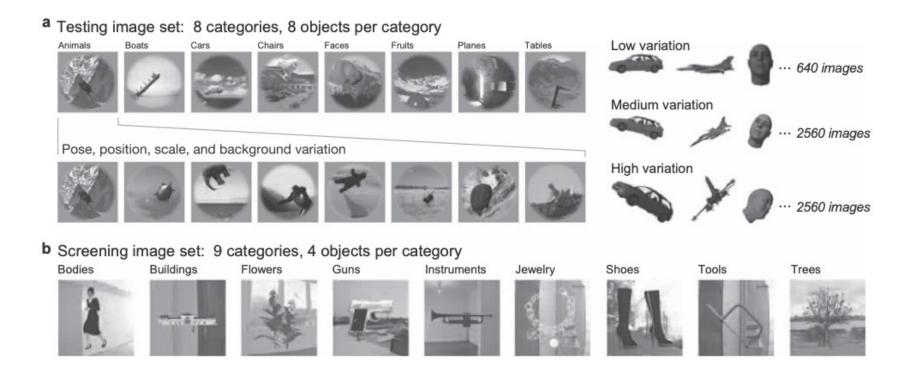
Example neuron

ገ

a

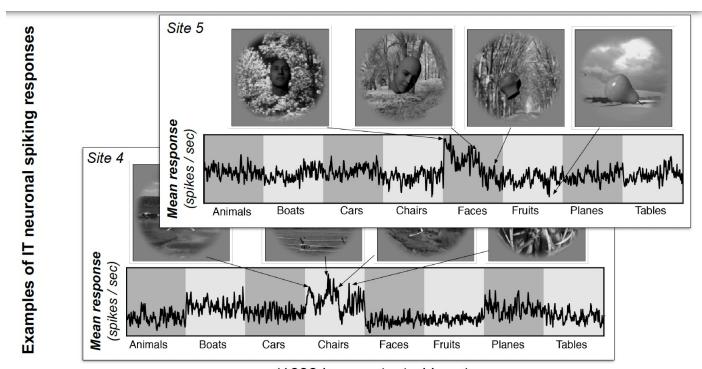


Core-object recognition paradigm



Yamins et al., PNAS 2014

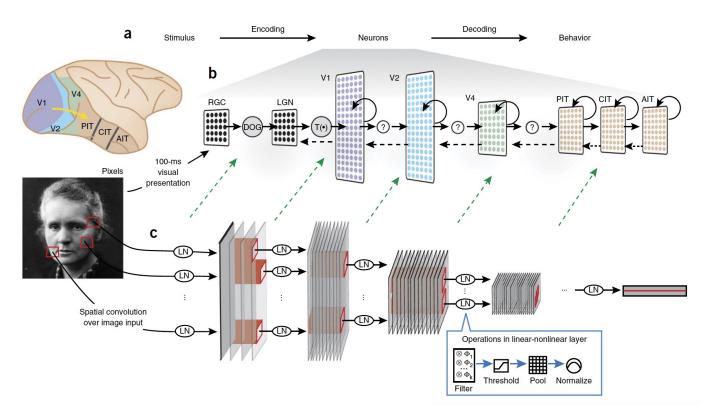
Example higher-order visual cortex response



(1600 images tested here)

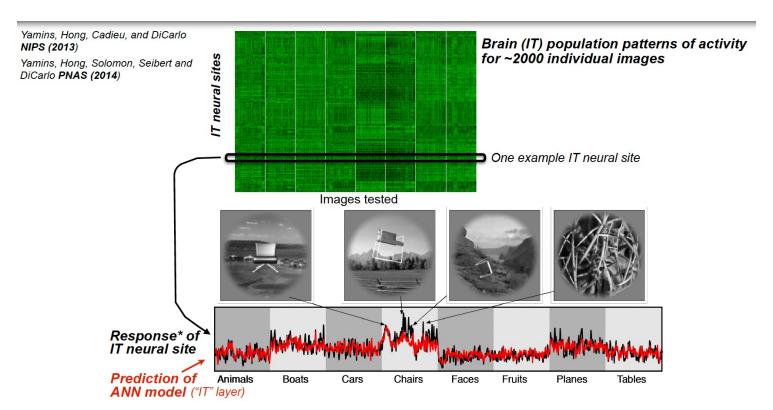
EPFL

Model building



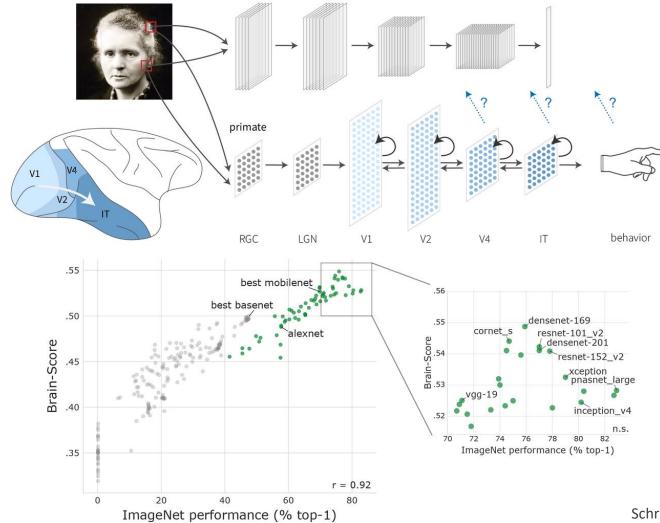
Yamins and Di Carlo, Nat Neuro 2016

Task-trained models, matches brain's "hidden neurons"



Slide from Jim DiCarlo, MIT

EPFL



model

Schrimpf et al. Neuron 2020

Where do the "labels" come from?

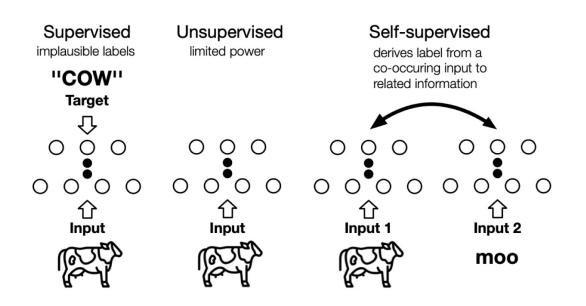
Training **CNNs on object recognition** gives rise to neural representations that resemble the representations in the brain (for various sensory systems)

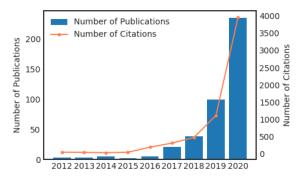
However:

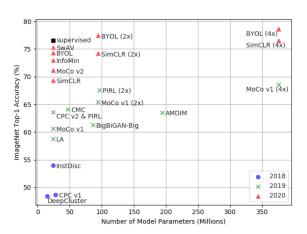
- Learning was based on many labeled examples, which is unlikely the case for the brain
- Could one not exploit the images, themselves without the labels?

-

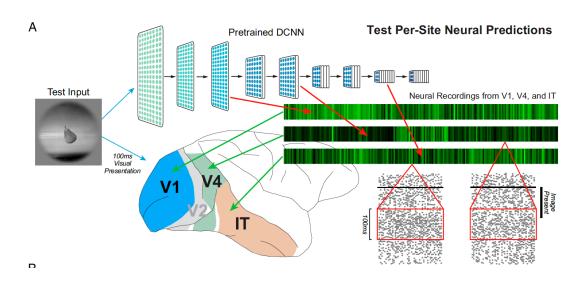
Self-supervised learning







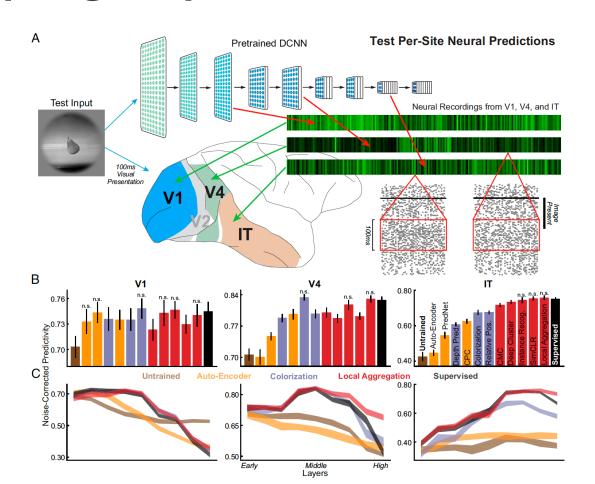
Comparing unsupervised tasks



Zhuang et al., PNAS 2020

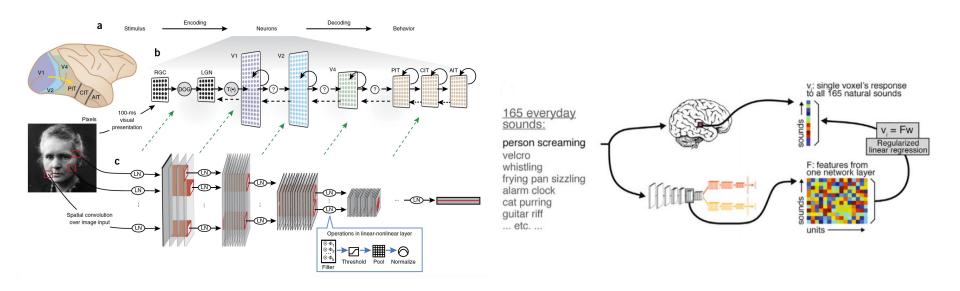
EPFL

Comparing unsupervised tasks

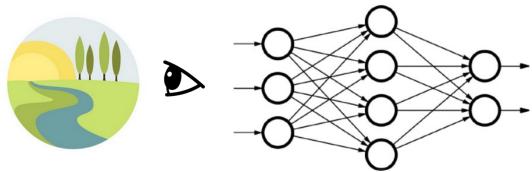


EPFL Task-driven modeling of sensory systems

This approach has been *used* in vision, audition, touch and thermoception, proprioception.



Using deep neural networks as goal-driven models of a system



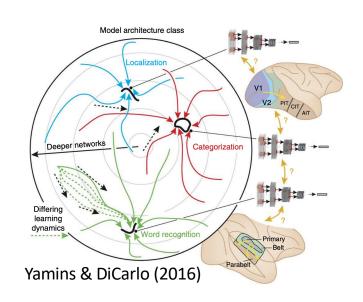
Vision: Yamins et al. (2014) -> object recog.

Audition: Kell et al. (2018)- speech recognition, speaker identification, natural sound identification

Barrel Cortex: Zhuang et al. (2017)

Cognition: Mante et al. (2013)

Proprioception: Sandbrink et al. (2023)

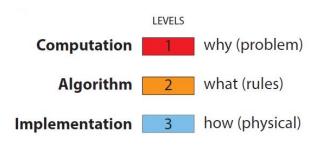


Revisiting Marr's levels

Mathis

Bottom-up:

Are "principles of implementation/algorithms" good at solving computational problems?



Top-down (Normative):

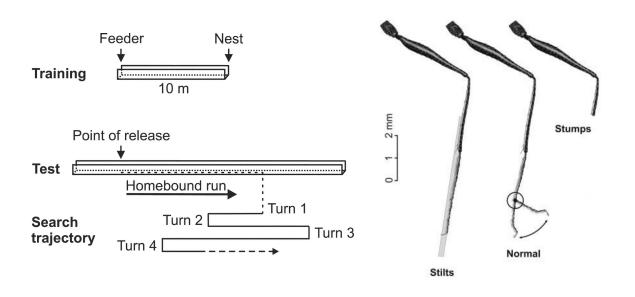
Which task-driven models provide good implementations?

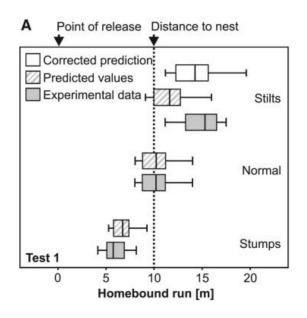
Adaptability of the sensorimotor system

Neuroscience

Artificial Intelligence

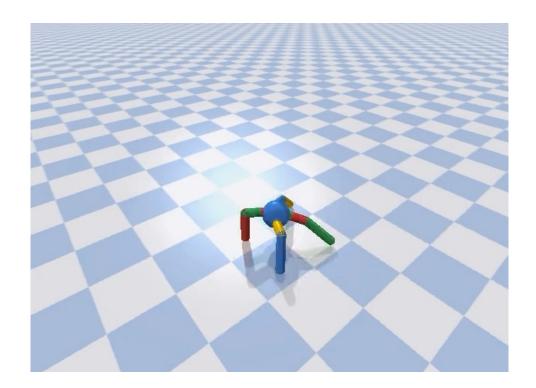
How do ants estimate the distance?





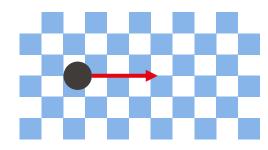
Wittlinger, Wehner & Wolf, Science 2006

Learning to walk with a changing body

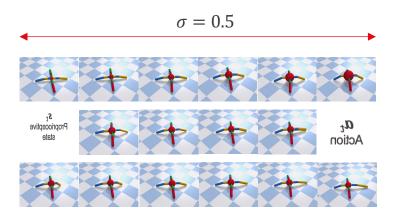


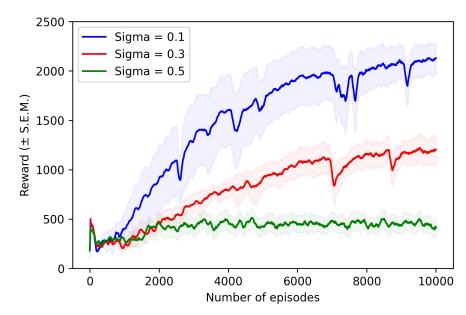
Ant (OpenAl Gym)

- Quadruped robot
- Action size: 8
- State size: 28
- Objective: run as fast as possible



Baseline: MLP policy

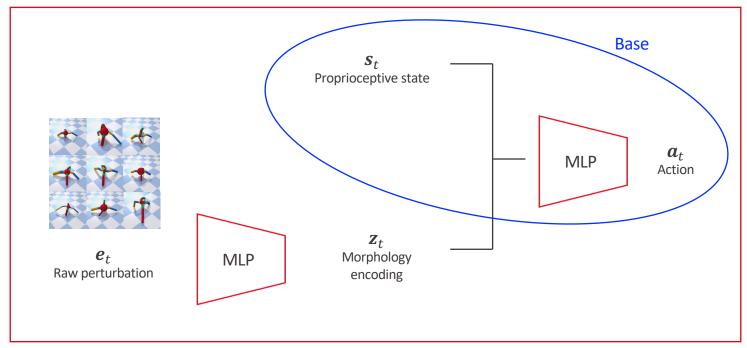




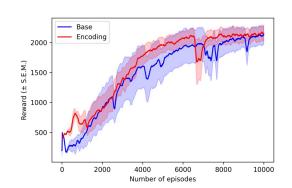
Baseline: MLP policy

A. Mathis

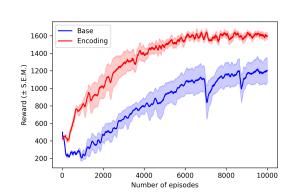
Morphology encoding policy (aka oracle)



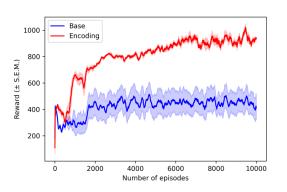
Morphology encoding policy

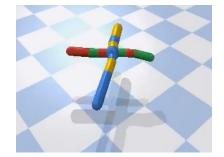


$$\sigma = 0.3$$

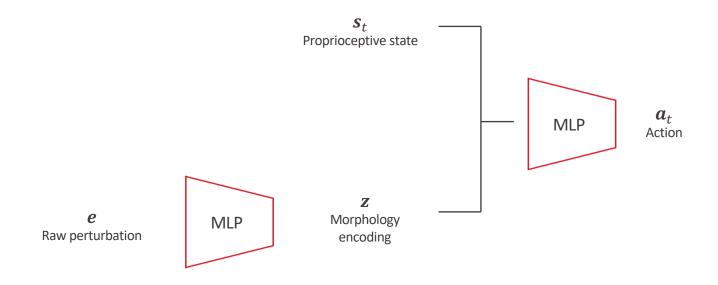


$$\sigma = 0.5$$



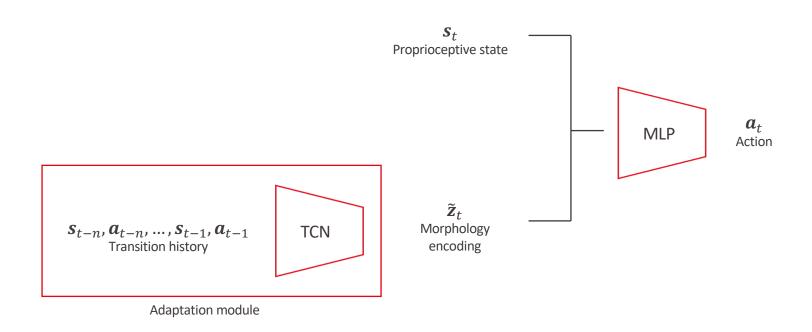


Morphology encoding from experience



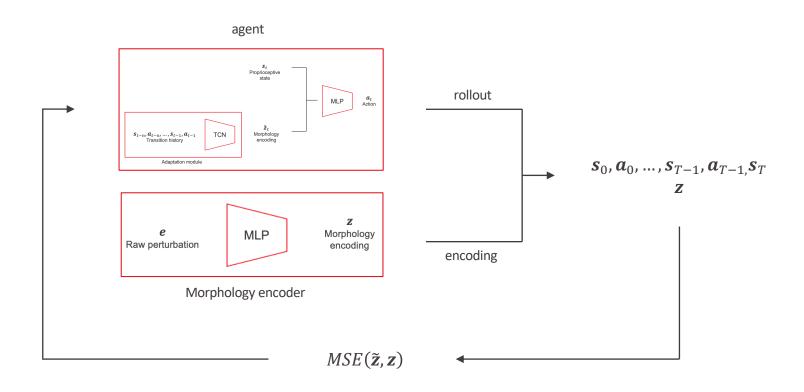
Kumar, A., Fu, Z., Pathak, D., & Malik, J, "RMA: Rapid Motor Adaptation for Legged Robots, 2021

Morphology encoding from experience



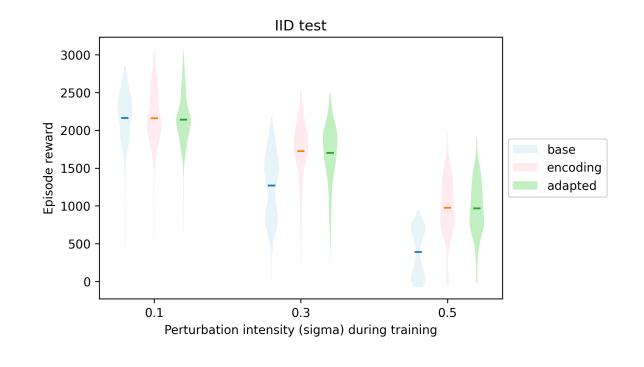
Kumar, A., Fu, Z., Pathak, D., & Malik, J, "RMA: Rapid Motor Adaptation for Legged Robots, 2021

Morphology encoding from experience



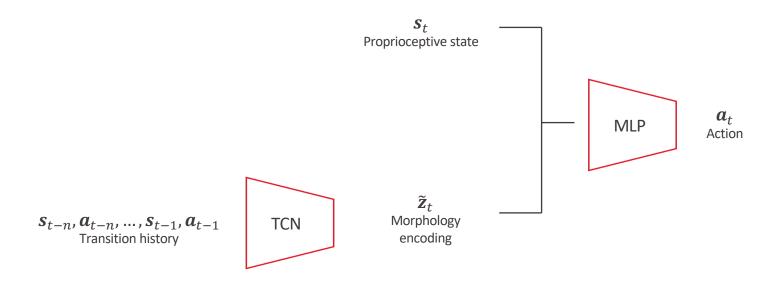
Kumar, A., Fu, Z., Pathak, D., & Malik, J, "RMA: Rapid Motor Adaptation for Legged Robots, 2021

Learning with a perturbed body



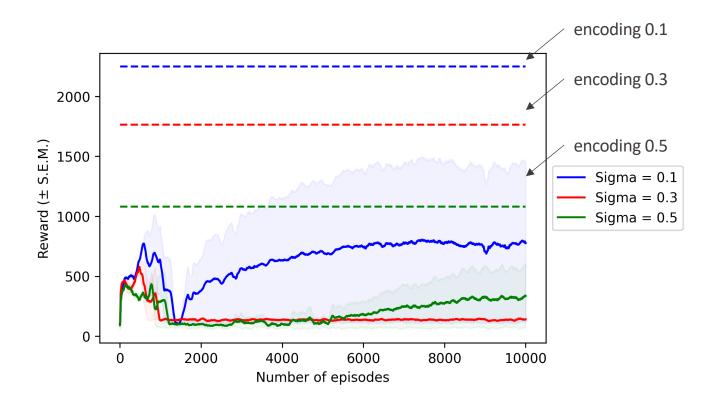
- 1

Is the 2-step training necessary?

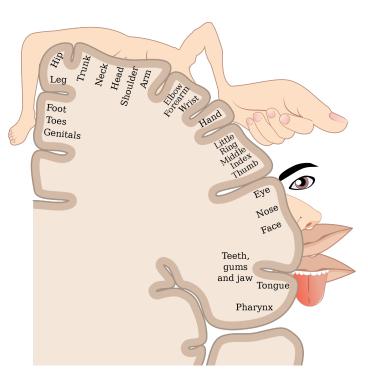


-

Training the CNN encoder end-to-end



Principles from the brain: Distributed sensing and control



- Independent low-level processing
- High-level proprioceptive input integration
- Distributed control

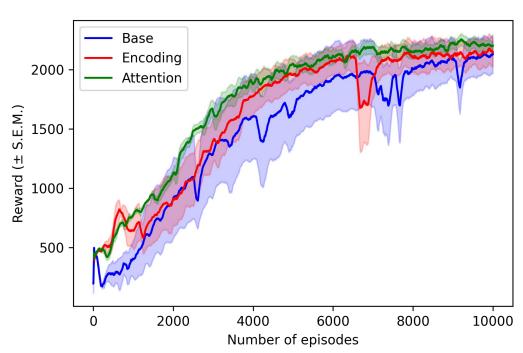
- 1

DMAP's brain inspired architecture

DMAP - **D**istributed **M**orphological **A**ttention **P**olicy Proprioceptive Independent Distributed state history K representations joint controllers Н TCN Joint-channel Ω_2 Time TCN attention Action TCN Channel features

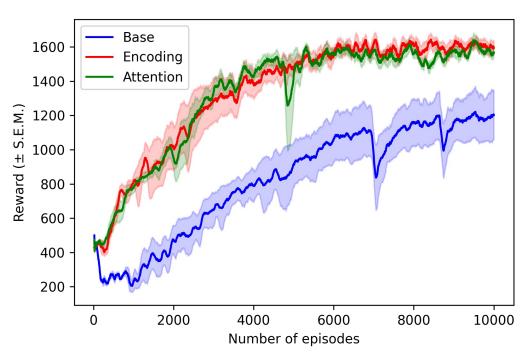
Chiappa, Marin Vargas, Mathis, Neurips 2022

DMAP performance comparison



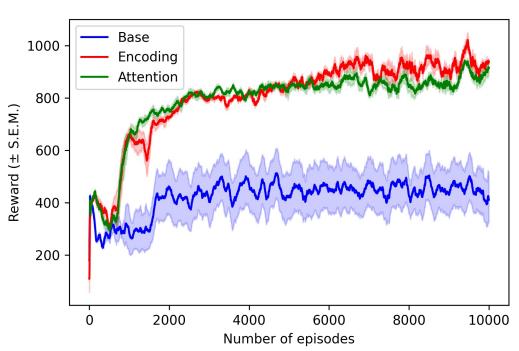
DMAP performance comparison

A. Mathis

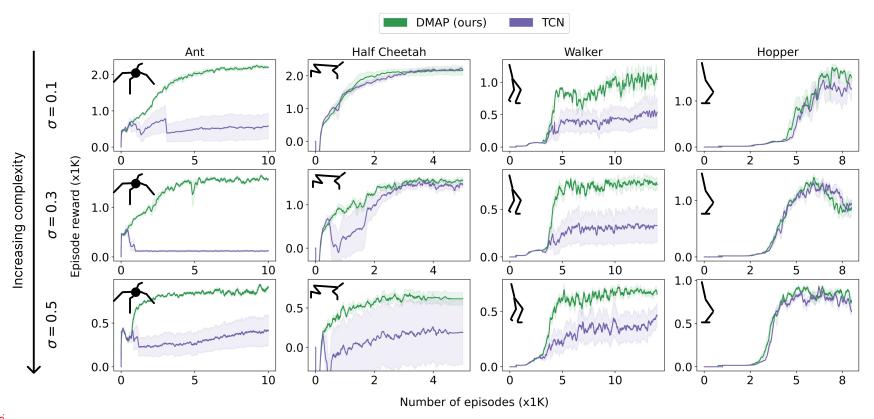


DMAP performance comparison

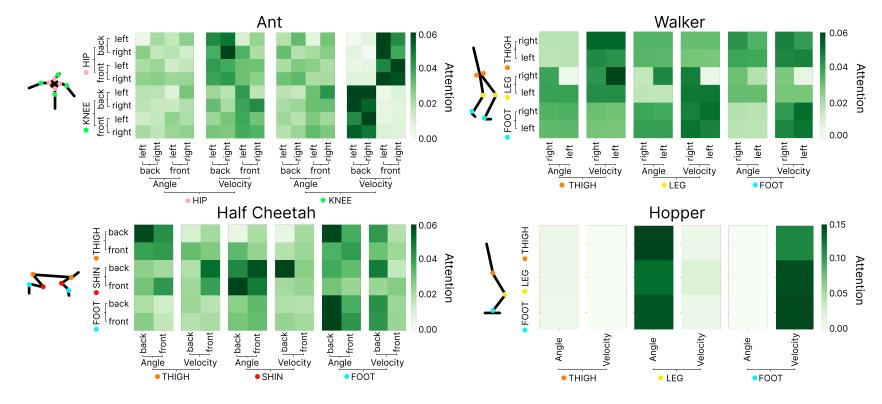
A. Mathis



Results also hold across different morphologies

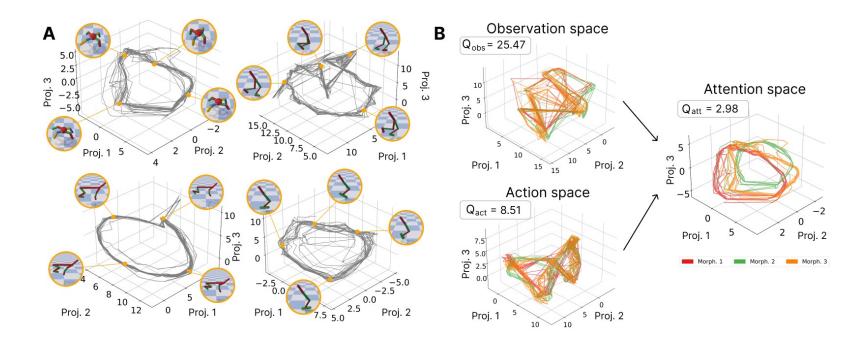


Analysis of the learned attention weights



A. Mathis

Attention is gait-cycle specific



Inductive biases

- We discussed a brain-inspired inductive bias (DMAP) that implicitly can deal with changing bodies (better than other policies)
- You'll discuss Tony Zador's Perspective in Nat. Comm 2019

A critique of pure learning and what artificial neural networks can learn from animal brains

Anthony M. Zador¹

Artificial neural networks (ANNs) have undergone a revolution, catalyzed by better supervised learning algorithms. However, in stark contrast to young animals (including humans), training such networks requires enormous numbers of labeled examples, leading to the belief that animals must rely instead mainly on unsupervised learning. Here we argue that most animal behavior is not the result of clever learning algorithms—supervised or unsupervised—but is encoded in the genome. Specifically, animals are born with highly structured brain connectivity, which enables them to learn very rapidly. Because the wiring diagram is far too complex to be specified explicitly in the genome, it must be compressed through a "genomic bottleneck". The genomic bottleneck suggests a path toward ANNs capable of rapid learning.

EPFL Conclusions

Modeling biological systems:

Task-driven modeling with ML provides insights into brain function (vison, audition, language...)

Vargas, A. M., Bisi, A., Chiappa, A. S., Versteeg, C., Miller, L. E., & Mathis, A. (2024). <u>Task-driven neural network models predict neural dynamics of proprioception</u>. *Cell*

Conversely:

Principles from Neuro/Psychology may provide better ML solutions (CNNs, RL, ...)

Hassabis et al (2017): Neuroscience-Inspired Artificial Intelligence, Neuron

Zador (2019): A critique of pure learning and what artificial neural networks can learn from animal brains, Nature Communication

Chiappa, A. S., Tano, P., Patel, N., Ingster, A., Pouget, A., & Mathis, A. (2024). <u>Acquiring musculoskeletal skills with curriculum-based reinforcement learning.</u> Neuron (in press)

