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Part 2

ML models for neuroscience



Biological Intelligence Artificial Intelligence

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



Temporal and spatial scales in neuroscience

Basset, Nat Neuro 2017
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Task-driven modeling: linking behavior to circuits

Neural code

Ecological niche

Environmental statistics

Optim
iza

tio
n
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Machine learning Neuroscience

Architecture Circuits

Task / objective Ecological niche

Dataset Environment

Optimization method (learning 
rule)

Natural selection + synaptic 
plasticity 

ML model
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Vision: Yamins et al. (2014) -> object recog. 

Audition: Kell et al. (2018)- speech recognition, 
speaker identification, natural sound 
identification
Barrel Cortex: Zhuang et al. (2017)

Proprioception: Sandbrink et al. (2023)

Cognition: Mante et al. (2013)

Using deep neural networks as goal-driven models of a system

Yamins & DiCarlo (2016) 



Ventral visual pathway

DiCarlo, Neuron 2012



IT neurons are nonlinear

Riesenhuber & Poggio, Nat Neuro 1999

Example neuron Model predictions (with max vs. sum)



Core-object recognition paradigm

Yamins et al., PNAS 2014



Example higher-order visual cortex response

Slide from Jim DiCarlo, MIT



Model building

Yamins and Di Carlo, Nat Neuro 2016



Task-trained models, matches brain’s “hidden 
neurons”

Slide from Jim DiCarlo, MIT



Schrimpf et al. Neuron 2020



Training CNNs on object recognition gives rise to neural represenations 
that resemble the representations in the brain (for various sensory 
systems)

However:
§ Learning was based on many labeled examples, which is unlikely the 

case for the brain 
§ Could one not exploit the images, themselves without the labels? 

Where do the “labels” come from? 



Self-supervised learning

Liu et al., IEEE Transactions on Knowledge and data engineering 2023



Comparing unsupervised tasks

Zhuang et al., PNAS 2020



Comparing unsupervised tasks

Zhuang et al., PNAS 2020



Task-driven modeling of sensory systems

Yamins and Di Carlo, Nat Neuro 2016

This approach has been used in vision, audition, touch and thermoception, proprioception.

Kell et al., Neuron 2018



Vision: Yamins et al. (2014) -> object recog. 

Audition: Kell et al. (2018)- speech recognition, 
speaker identification, natural sound 
identification
Barrel Cortex: Zhuang et al. (2017)

Proprioception: Sandbrink et al. (2023)

Cognition: Mante et al. (2013)

Using deep neural networks as goal-driven models of a system

Yamins & DiCarlo (2016) 



Revisiting Marr’s levels
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Illustration from Krakauer et al. 2017, Neuron

Bottom-up:

Are “principles of 
implementation/algorithms” 
good at solving computational 
problems? 

Top-down (Normative):

Which task-driven models 
provide good implementations?
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How do ants estimate the distance?

Wittlinger, Wehner & Wolf, Science 2006



Learning to walk with a changing body
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Ant (OpenAI Gym)
§ Quadruped robot
§ Action size: 8
§ State size: 28

§ Objective: run as 
fast as possible
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Chiappa, Marin Vargas, Mathis, Neurips 2022



Baseline: MLP policy
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𝒔!
Proprioceptive state MLP 𝒂!

Action

𝜎 = 0.5
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Chiappa, Marin Vargas, Mathis, Neurips 2022



Baseline: MLP policy
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𝒔!
Proprioceptive state MLP 𝒂!

Action
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Morphology encoding policy (aka oracle)
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MLP𝒆!
Raw perturbation

𝒛!
Morphology 

encoding

𝒔!
Proprioceptive state

MLP 𝒂!
Action

Encoding

Base
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Morphology encoding policy
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𝜎 = 0.1 𝜎 = 0.3 𝜎 = 0.5
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Chiappa, Marin Vargas, Mathis, Neurips 2022



Morphology encoding from experience

MLP𝒆
Raw perturbation

𝒛
Morphology 

encoding

𝒔!
Proprioceptive state

MLP 𝒂!
Action

Kumar, A., Fu, Z., Pathak, D., & Malik, J, “RMA: Rapid Motor Adaptation for Legged Robots, 2021 



Morphology encoding from experience

TCN𝒔!"#, 𝒂!"#, … , 𝒔!"$, 𝒂!"$
Transition history

.𝒛!
Morphology 

encoding

𝒔!
Proprioceptive state

MLP 𝒂!
Action

Adaptation module

Kumar, A., Fu, Z., Pathak, D., & Malik, J, “RMA: Rapid Motor Adaptation for Legged Robots, 2021 



Morphology encoding from experience

rollout

𝒔%, 𝒂%, … , 𝒔&"$, 𝒂&"$,𝒔&
𝒛

encoding

𝑀𝑆𝐸 .𝒛, 𝒛

Kumar, A., Fu, Z., Pathak, D., & Malik, J, “RMA: Rapid Motor Adaptation for Legged Robots, 2021 

agent

Morphology encoder



Learning with a perturbed body
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Is the 2-step training necessary?

TCN𝒔!"#, 𝒂!"#, … , 𝒔!"$, 𝒂!"$
Transition history

.𝒛!
Morphology 

encoding

𝒔!
Proprioceptive state

MLP 𝒂!
Action



Training the CNN encoder end-to-end
encoding 0.1

encoding 0.3

encoding 0.5



Principles from the brain: 
Distributed sensing and control

§ Independent low-level 
processing

§ High-level proprioceptive 
input integration

§ Distributed control



DMAP’s brain inspired architecture

Chiappa, Marin Vargas, Mathis, Neurips 2022



DMAP performance comparison
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Sigma = 0.1

26
.5

.

Chiappa, Marin Vargas, Mathis, Neurips 2022



DMAP performance comparison
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Sigma = 0.3
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DMAP performance comparison
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Sigma = 0.5
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Results also hold across different morphologies
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Chiappa, Marin Vargas, Mathis, Neurips 2022



Analysis of the learned attention weights
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Attention is gait-cycle specific
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§ We discussed a brain-inspired inductive bias (DMAP) that implicitly can 
deal with changing bodies (better than other policies)

§ You’ll discuss Tony Zador’s Perspective in Nat. Comm 2019

Inductive biases



Modeling biological systems:
Task-driven modeling with ML provides insights into brain function (vison, audition, language…)
Vargas, A. M., Bisi, A., Chiappa, A. S., Versteeg, C., Miller, L. E., & Mathis, A. (2024). Task-driven neural network models predict neural 
dynamics of proprioception. Cell

Conversely:
Principles from Neuro/Psychology may provide better ML solutions (CNNs, RL, …) 
Hassabis et al (2017): Neuroscience-Inspired Artificial Intelligence, Neuron

Zador (2019): A critique of pure learning and what artificial neural networks can learn from animal brains, Nature Communication

Chiappa, A. S., Tano, P., Patel, N., Ingster, A., Pouget, A., & Mathis, A. (2024). Acquiring musculoskeletal skills with curriculum-based 
reinforcement learning.  Neuron (in press)

Conclusions

https://www.cell.com/cell/fulltext/S0092-8674(24)00239-3
https://www.cell.com/cell/fulltext/S0092-8674(24)00239-3
https://www.cell.com/neuron/pdf/S0896-6273(17)30509-3.pdf
https://www.nature.com/articles/s41467-019-11786-6
https://www.biorxiv.org/content/10.1101/2024.01.24.577123.abstract
https://www.biorxiv.org/content/10.1101/2024.01.24.577123.abstract

